On the Precision of Social and Information Networks

Kamesh Munagala (Duke)

Reza Bosagh Zadeh (Stanford)

Ashish Goel (Stanford)

Aneesh Sharma (Twitter, Inc.)

Information Networks

• Social Networks play an important role in information dissemination

 Emergency events, product launches, sports updates, celebrity news,...

• Their effectiveness as information dissemination mechanisms is a source of their popularity

A Fundamental Tension

Two conflicting characteristics in social networks:

- Diversity: Users are interested in diverse content
- **Broadcast:** Users disseminate information via posts/ tweets — these are blunt broadcast mechanisms!

Running Example

Bob tweets about:

- Christianity
- DC Politics
- Bulls

Charlie tweets about:

- Jay-Z
- Lady Gaga
- Kobe

Adam interested in

- Apple
- Rap music
- Lakers

Running Example

Bob tweets about:

- Christianity
- DC Politics
- Bulls

Charlie tweets about:

- Jay-Z
- Lady Gaga
- Kobe

Follow

Adam interested in

- Apple
- Rap music
- Lakers

A Fundamental Tension

Two conflicting characteristics in social networks:

- Diversity: Users are interested in diverse content
- **Broadcast:** Users disseminate information via posts/ tweets — these are blunt broadcast mechanisms!

Precision: Do users receive a lot of un-interesting content?

Recall: Do users miss a lot of interesting content?

Question we study

Can information networks have high precision and recall?

Case Study: Twitter

A random tweet is uninteresting to a random user...

But users have interests and follow others based on these

Information networks like Twitter are constructed according to users' interests

Revisiting our example...

Bob tweets about:

- Christianity
- DC Politics
- Bulls

Charlie tweets about:

- Jay-Z
- Lady Gaga
- Kobe

Follow

Adam interested in

- Apple
- Rap music
- Lakers

Small User Study on Twitter

Roadmap

- User Behavior Assumption:
 - 1. Users have immutable interests (independent of the network)
 - 2. Choose to connect to other users based on their interests
 - 3. Step (2) is optimized for precision and recall

Roadmap

- User Behavior Assumption:
 - 1. Users have immutable interests (independent of the network)
 - 2. Choose to connect to other users based on their interests
 - 3. Step (2) is optimized for precision and recall
- **Question 1:** What conditions on the structure of user interests are necessary for high precision and recall, and small dissemination time?
- **Question 2:** Can we empirically validate these conditions as well as the conclusion on Twitter?

User-Interest Model

- Set of interests I; Set of users U
- Each interest *i* is associated with two sets of users:
 - **Producers** P(i) = Users who tweet about i
 - Consumers C(i) = Users who are interested in i
- Denote the mapping from users to interests as *Q*(*I*, *U*)
- Assume: $P(i) \subseteq C(i)$ for all interests i

Example

User b

$$P(b) = \{s, t\}$$

$$C(b) = \{r, s, t\}$$

User c

$$P(c) = \{q, t\}$$

 $C(c) = \{q, s, t\}$

User a

$$P(a) = \{q\}$$

 $C(a) = \{q, r, s\}$

Social (user-user) Graph G(U,E)

User b

$$P(b) = \{s, t\}$$

$$C(b) = \{r, s, t\}$$

User c

$$P(c) = \{q, t\}$$

 $C(c) = \{q, s, t\}$

User a receives interests $R(a) = \{q, t\}$

Social graph

User a

$$P(a) = \{q\}$$

 $C(a) = \{q, r, s\}$

Precision and Recall

Functions of user-interest map Q(I, U) and social graph G(U, E)

Precision(u) =
$$\frac{|R(u) \cap C(u)|}{|R(u)|}$$
Consumption interests
$$|R(u)|$$
Interests received from followees

Recall
$$(u) = \frac{|R(u) \cap C(u)|}{|C(u)|}$$

PR Score

$$PR(u) = \frac{|R(u) \cap C(u)|}{|R(u) \cup C(u)|}$$

$$\approx \text{Min}(\text{Precision}(u), \text{Recall}(u))$$

Example Revisited

User b

$$P(b) = \{s, t\}$$

$$C(b) = \{r, s, t\}$$

User c

$$P(c) = \{q, t\}$$

 $C(c) = \{q, s, t\}$

Social graph

$$R(a) = \{q, t\}$$

 $C(a) = \{q, r, s\}$

$$PR(a) = \frac{1}{4} = 0.25$$

User a

$$P(a) = \{q\}$$

 $C(a) = \{q, r, s\}$

Improved Score

User b

$$P(b) = \{s, t\}$$

 $C(b) = \{r, s, t\}$

User c

$$P(c) = \{q, t\}$$

 $C(c) = \{q, s, t\}$

Social graph

$$R(a) = \{q, s, t\}$$

 $C(a) = \{q, r, s\}$

$$PR(a) = 2/4 = 0.5$$

User a

$$P(a) = \{q\}$$

 $C(a) = \{q, r, s\}$

α -PR User-Interest Maps Q(I,U)

A user-interest map Q(I,U) is α -PR if: There exists a social graph G(U,E) s.t. all users u have PR-Score $\geq \alpha$

Special case: 1-PR means that R(u) = C(u) for all users u

Necessary Conditions for 1-PR

• Condition 1:

If Q(I, U) is "non-trivial" and G(U, E) is (strongly) connected: Then $P(i) \subset C(i)$ for some interest i

Informal implication:

Users have broader consumption interests and narrower production interests

Experimental Setup

- Classify text of tweets using 48 topics
 - Yields "topic distribution" for each user
 - Entropy of distribution lies between 0 and $log_2(48) = 3.87$
- P(u)= Interest distribution in tweets produced by u
- C(u) = Interest distribution in URL clicks made by u

Verifying Condition 1

TYPE OF INTEREST DISTRIBUTION	AVERAGE SUPPORT	AVERAGE ENTROPY
Consumption Interests	7.78	2.00
Production Interests	3.96	1.24

Can Interests be chosen at Random?

Different interests can have different "participation levels"

Theorem: If users choose production and consumption interests **at random** preserving participation levels of the interests, then (under minor assumptions):

With high probability the interest structure is not α - PR for any constant α

Key proof idea: Q(I, U) behaves like an expander graph

Condition 2: Interests have Structure

Interest Structure achieving 1-PR

Kronecker product model

User u

d = O(log n) dimensions K = O(log n) values

Interest Structure achieving 1-PR

Kronecker product model

 $d = O(\log n)$ dimensions

 $K = O(\log n)$ values

User u

Similarity graph on values

Similarity graph on values

Interest Structure

Set of relevant dimensions & their values

Attributes/Dimensions

Agrees exactly on all relevant dimensions

Consumer

Similar on all relevant dimensions

Not interested

User-user Graph

[Leskovec, Chakrabarti, Kleinberg, Faloutsos, Ghahramani '10]

- Super-constant average degree
- Heavy tailed degree distributions
- Constant diameter

Main Positive Result

• The Kronecker interest structure has 100% PR!

• Users only receive interesting information

• Users receive all information they are interested in

• The dissemination time is constant.

Empirical Study of Precision

Median precision = 40% Baseline precision = 17%

Interpretation: One in 2.5 interests received on any follow edge are interesting

Caveat: This is only a first step!

- Measuring interests
 - Used URL clicks as a measure of consumption/relevance
 - Used 48 topics as proxy for interests
 - Not considered quality of tweets in measuring interest
 - Not explored structure of interests in great detail
- Empirical validation
 - User studies are more reliable, but our study is small
 - We did not measure recall or dissemination time

Open Questions

- Better empirical measures of interests and PR?
 - In-depth analysis of structure of interests
 - How can recall be measured?

- Can high PR information networks arise in a decentralized fashion?
 - How can users discover high PR links?

