On the Precision of Social and Information Networks

Kamesh Munagala (Duke)

Reza Bosagh Zadeh (Stanford)
Ashish Goel (Stanford)
Aneesh Sharma (Twitter, Inc.)
Information Networks

• Social Networks play an important role in information dissemination
 • Emergency events, product launches, sports updates, celebrity news,…

• Their effectiveness as information dissemination mechanisms is a source of their popularity
A Fundamental Tension

Two conflicting characteristics in social networks:

- **Diversity**: Users are interested in diverse content
- **Broadcast**: Users disseminate information via posts/tweets – these are blunt broadcast mechanisms!
Running Example

Bob tweets about:
- Christianity
- DC Politics
- Bulls

Charlie tweets about:
- Jay-Z
- Lady Gaga
- Kobe

Adam interested in
- Apple
- Rap music
- Lakers
Running Example

Bob tweets about:
• Christianity
• DC Politics
• Bulls

Charlie tweets about:
• Jay-Z
• Lady Gaga
• Kobe

Adam interested in
• Apple
• Rap music
• Lakers
A Fundamental Tension

Two conflicting characteristics in social networks:

- **Diversity**: Users are interested in diverse content
- **Broadcast**: Users disseminate information via posts/tweets – these are blunt broadcast mechanisms!

Precision: Do users receive a lot of un-interesting content?

Recall: Do users miss a lot of interesting content?
Can information networks have high precision and recall?
Case Study: Twitter

- A random tweet is uninteresting to a random user…
- But users have interests and follow others based on these

Information networks like Twitter are constructed according to users’ interests
Revisiting our example...

Bob tweets about:
- Christianity
- DC Politics
- Bulls

Charlie tweets about:
- Jay-Z
- Lady Gaga
- Kobe

Adam is interested in:
- Apple
- Rap music
- Lakers
Small User Study on Twitter

User-rated precision of tweets

- Precision
- User number

- Timeline
- Random
Roadmap

- User Behavior Assumption:
 1. Users have immutable interests (independent of the network)
 2. Choose to connect to other users based on their interests
 3. Step (2) is optimized for precision and recall
Roadmap

- User Behavior Assumption:
 1. Users have immutable interests (independent of the network)
 2. Choose to connect to other users based on their interests
 3. Step (2) is optimized for precision and recall

- **Question 1:** What conditions on the structure of user interests are necessary for high precision and recall, and small dissemination time?

- **Question 2:** Can we empirically validate these conditions as well as the conclusion on Twitter?
User-Interest Model

• Set of interests I; Set of users U

• Each interest i is associated with two sets of users:
 • **Producers** $P(i) =$ Users who tweet about i
 • **Consumers** $C(i) =$ Users who are interested in i

• Denote the mapping from users to interests as $Q(I, U)$

• Assume: $P(i) \subseteq C(i)$ for all interests i
Example

User a
P(a) = \{q\}
C(a) = \{q, r, s\}

User b
P(b) = \{s, t\}
C(b) = \{r, s, t\}

User c
P(c) = \{q, t\}
C(c) = \{q, s, t\}
Social (user-user) Graph $G(U, E)$

- **User a**
 - $P(a) = \{q\}$
 - $C(a) = \{q, r, s\}$

- **User b**
 - $P(b) = \{s, t\}$
 - $C(b) = \{r, s, t\}$

- **User c**
 - $P(c) = \{q, t\}$
 - $C(c) = \{q, s, t\}$

User a receives interests

- **Social graph**
 - $R(a) = \{q, t\}$

- **User a**
 - $P(a) = \{q\}$
 - $C(a) = \{q, r, s\}$
Precision and Recall

Functions of user-interest map $Q(I, U)$ and social graph $G(U, E)$

Precision(u) = \[\frac{|R(u) \cap C(u)|}{|R(u)|} \]

Recall(u) = \[\frac{|R(u) \cap C(u)|}{|C(u)|} \]
PR Score

\[PR(u) = \frac{|R(u) \cap C(u)|}{|R(u) \cup C(u)|} \approx \min\left(\text{Precision}(u), \text{Recall}(u)\right) \]
Example Revisited

User a
- $P(a) = \{q\}$
- $C(a) = \{q, r, s\}$
- $R(a) = \{q, t\}$
- $PR(a) = \frac{1}{4} = 0.25$

User b
- $P(b) = \{s, t\}$
- $C(b) = \{r, s, t\}$

User c
- $P(c) = \{q, t\}$
- $C(c) = \{q, s, t\}$
Improved Score

User a

P(a) = \{q\}
C(a) = \{q, r, s\}
PR(a) = 2/4 = 0.5

User b

P(b) = \{s, t\}
C(b) = \{r, s, t\}

User c

P(c) = \{q, t\}
C(c) = \{q, s, t\}

Social graph
α-PR User-Interest Maps $Q(I, U)$

A user-interest map $Q(I, U)$ is α-PR if:
There exists a social graph $G(U, E)$ s.t.
all users u have PR-Score $\geq \alpha$

Special case: 1-PR means that $R(u) = C(u)$ for all users u
Necessary Conditions for 1-PR

• **Condition 1:**
 If $Q(I,U)$ is “non-trivial” and $G(U,E)$ is (strongly) connected:

 Then $P(i) \subset C(i)$ for some interest i

• **Informal implication:**
 Users have broader consumption interests and narrower production interests
Experimental Setup

- Classify text of tweets using 48 topics
 - Yields “topic distribution” for each user
 - Entropy of distribution lies between 0 and $\log_2(48) = 3.87$

- $P(u) =$ Interest distribution in tweets produced by u
- $C(u) =$ Interest distribution in URL clicks made by u
Verifying Condition 1

<table>
<thead>
<tr>
<th>TYPE OF INTEREST DISTRIBUTION</th>
<th>AVERAGE SUPPORT</th>
<th>AVERAGE ENTROPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption Interests</td>
<td>7.78</td>
<td>2.00</td>
</tr>
<tr>
<td>Production Interests</td>
<td>3.96</td>
<td>1.24</td>
</tr>
</tbody>
</table>
Can Interests be chosen at Random?

Different interests can have different “participation levels”

Theorem: If users choose production and consumption interests *at random* preserving participation levels of the interests, then (under minor assumptions):

With high probability the interest structure is not α-PR for any constant α

Key proof idea: $Q(I,U)$ behaves like an expander graph
Condition 2: Interests have Structure

Edge = Share more users than is predicted by a random assortment
Interest Structure achieving 1-PR

Kronecker product model

Attributes/Dimensions

User u

Kobe Gaga LakersObama

Y N M N

d = $O(\log n)$ dimensions
K = $O(\log n)$ values
Interest Structure achieving 1-PR

Kronecker product model

User u

<table>
<thead>
<tr>
<th>Attributes/Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobe, Gaga, Lakers, Obama</td>
</tr>
</tbody>
</table>

$d = O(\log n)$ dimensions
$K = O(\log n)$ values

Similarity graph on values

Y, M, N
Interest Structure

Attributes/Dimensions

Similarity graph on values

Producer

Agrees exactly on all relevant dimensions

Consumer

Similar on all relevant dimensions

Not interested

Set of relevant dimensions & their values

Interest i

Set of relevant dimensions & their values

Kobe Gaga Lakers Obama

Y M N
User-user Graph

Leskovec, Chakrabarti, Kleinberg, Faloutsos, Ghahramani ‘10

Attributes/Dimensions

Kobe Gaga LakersObama

User a

Y Y M M

Edge

User b

Y M N Y

Edge

User c

M N M M

Similarity graph on values

Y M N

Undirected Edge between two users iff ALL dimensions are similar

Such graphs can have:

- Super-constant average degree
- Heavy tailed degree distributions
- Constant diameter
Main Positive Result

- The Kronecker interest structure has 100% PR!
- Users only receive interesting information
- Users receive all information they are interested in
- The dissemination time is constant.
Empirical Study of Precision

\[\text{Precision}(u) = \frac{\sum_{(u,v) \in E} |C(u) \cap P(v)|}{\sum_{(u,v) \in E} |P(v)|} \]

Median precision = 40%
Baseline precision = 17%

Interpretation: One in 2.5 interests received on any follow edge are interesting
Caveat: This is only a first step!

• Measuring interests
 • Used URL clicks as a measure of consumption/relevance
 • Used 48 topics as proxy for interests
 • Not considered quality of tweets in measuring interest
 • Not explored structure of interests in great detail

• Empirical validation
 • User studies are more reliable, but our study is small
 • We did not measure recall or dissemination time
Open Questions

- Better empirical measures of interests and PR?
 - In-depth analysis of structure of interests
 - How can recall be measured?

- Can high PR information networks arise in a decentralized fashion?
 - How can users discover high PR links?
Thank You!