Hierarchical Community **Decomposition** Via Oblivious Routing **Techniques**

Sean Kennedy

Bell Labs Research (Murray Hill, NJ, USA) Oct 8th, 2013

Joint work Jamie Morgenstern (CMU), Gordon Wilfong (BLR), Liza Zhang (BLR)

····· Alcatel·Lucent

What make a "good" community in a social network?

- Small diameter (k-center, k-median, k-means)
 - Need to choose number of communities before hand
 - Results dependant on starting centers
- High density (high max or average degree)
- Small cut (minimum conductance)
 - NP-hard
- Modularity based methods
 - Louvain method [Blondel, Guillaume, Lambiotte, Lefebvre, 2008]
 - Resolution problems

•

Conductance

$$\varphi(U) := \frac{\operatorname{cap}(U, V \setminus U)}{\min\{\operatorname{cap}(U, V), \operatorname{cap}(V \setminus U, V)\}}$$

$$\mathbf{cap}(A,B) = \sum_{x \in A} \sum_{x \in B} w_{xy}$$

Most NP-hard to compute.

Can approximate:

O(log n)-approx [Leighton, Rao, 1999] O(√log n)-approx [Aurora, Rao Vazirani, 2004]

Spectral cuts heuristically find low conductance cuts

[Leskovec, Lang, Mahoney 2010] show all cut based metrics are similar in practice

Focus is on best cut of minimum conductance

Related

Bi-criteria result of [Kannan, Vempala, Vetta, 2004]

 (α, ϵ) -clustering (each community has conductance at most α and at most ϵ fraction of edges between communities)

Thm: Exists an (α, ϵ) -clustering then can find $(f(\alpha), g(\epsilon))$ -clustering.

Hierarchical Community Decomposition

Decomposition tree T

- root labeled by V
- children form a partition

A Good Community:

a) must be internally well-connected

λ-Detached

$$|U| \le \frac{|V'|}{2}$$
 and $\frac{\operatorname{cap}(U, V \setminus U)}{\operatorname{cap}(U, V' \setminus U)} \ge \lambda$

U is λ-Detached if it is **small enough** and has **many external connections**

··· Alcatel·Lucent 🍕

λ-Detached (example)

$$|U| \le \frac{|V'|}{2}$$
 and $\frac{\operatorname{cap}(U, V \setminus U)}{\operatorname{cap}(U, V' \setminus U)} = \frac{7}{3}$

•• Alcatel·Lucent 🕢

Hierarchical Community Decomposition

A decomposition tree T

- root labeled by V
- children form a partition

A Good Community:

a) does not contain λ-detached subgraphs.

A Good Decomposition:

b) contains all levels of hierarchy.

Alcatel·Lucent

δ-Linked

$$\sum_{i \in I} |U_i| \le \frac{|V'|}{2} \quad \text{and} \quad \frac{i}{2}$$

$$\sum_{i \in I} |U_i| \leq \frac{|V'|}{2} \quad \text{and} \quad \frac{\sum_{i,j \in I} \operatorname{cap}(U_i, U_j)}{\sum_{i \in I, j \notin I} \operatorname{cap}(U_i, U_j)} > \delta$$

 U_1, \dots, U_k is δ -linked if their union is **small** & has *many internal connections*

Alcatel·Lucent

δ-Linked (example)

$$|U_1| + |U_2| \le \frac{|V'|}{2} \quad \text{and} \quad \frac{\displaystyle\sum_{i,j \in I} \mathbf{cap}(U_i, U_j)}{\displaystyle\sum_{i \in I, j \notin I} \mathbf{cap}(U_i, U_j)} = \frac{6}{4}$$

1

(λ, δ) -Hierarchical Community Decomposition

A *decomposition tree* T satisfying:

- 1. For each a in T, V_a is no λ -detachable subgraphs
- 2. For each non-leaf a in T with children c1,...,ck, no subset of V_{c1} ,..., V_{ck} is δ-linkable
- 3. For each leaf node a, $|V_a| = 1$

Finding (λ, δ) -HCDs

 (λ, δ) -HCD is a tree T s.t.:

- 1. For all a, V_a is no λ -detachable sugraphs
- 2. Non-leafs: no subset of children is δ -linkable
- 3. Leaves: $|V_a| = 1$

[Räcke 02] There exists a $(O(\log n), O(\log n)) - HCD$ tree T of height at most $\log n$.

Theorem: There exists a $(O(\log n), O(1)) - HCD$ tree T.

······ Alcatel·Lucent 🥖

Finding (λ, δ) -HCDs continued

(λ,δ)-HCD:

- 1. For all a, V_a is no λ -detachable subgraphs
- 2. Non-leafs: no subset of children is δ -linkable
- 3. Leaves: $|V_a| = 1$

Find partition $P_1, ..., P_k$ of A s.t.

- i. Each P_i satisfies 1.
- ii. A satisfies 2.
- iii. Each P_i has size at most |A|/2

ALG 1: while subset S of $P_1, ..., P_k$ is δ -linkable:

- Group parts of S
- Ensure S satisfies 1. (ALG 2)

ALG 2: while subset S' of S is λ -detachable:

- Replace S with S' and S \ S'
- Ensure S' and S \ S' satisfy 1. (ALG 2)

Determining if subset S' of S is λ-detachable

(Determining if subset S of $P_1, ..., P_k$ is δ -linkable is similar.)

Räcke: Try all subsets (subsequently improved for routing [Harrelson *et al.* 2003] [Bienkowski *et al.* 2003]

Our Heuristic: Check a fixed number of spectral cuts.

Experiments (fixing a spectral cut)

Alcatel·Lucent

Generating Synthetic Hierarchical Networks k-Level Hierarchical Planted I-Partition model → (k,I)-HPPM

Planted I-Partition model [Codon, Karp 01] Recursively apply k-times for $p_k < ... < p_2 < p_1$

•• Alcatel • Lucent

Experiments (Easy cases)

(1,2)-HPPM

(3,2)-HPPM

In fact, (k,2)-HPPM and (k,3)-HPPM are easy for all k

· · · Alcatel · Lucent 🥠

Experiments continued

· · Alcatel · Lucent 🥢

Real-world Network Experiments

Facebook N= 6K,E=31K

arXiv CA-HepPh N=12K,E= 118K

arXiv CA-GrQc N=5K,E=14K

Future Directions

- a. How best to choose λ and δ ?
- b. Trade-offs between λ and δ ?

Theorem: There exists a (λ, δ) – HCD tree T, where

$$\lambda \ge 4\log n$$

$$\delta \ge (1 - \frac{2}{\lambda} \log n)^{-1}$$

- c. Scalability
 - choice of δ
 - Local spectral methods, etc.

