Similarity Estimation in Social Networks

Edith Cohen¹ Daniel Delling¹ Fabian Fuchs²

Andrew V. Goldberg¹ Moises Goldszmidt¹ Renato Werneck¹

¹Microsoft Research Silicon Valley

²Karlsruhe Institute of Technology, Germany, intern at Microsoft Research during this work

COSN'13

10/8/2013

Applications in Social Graphs

(Some) applications:

- link prediction
- (overlapping) community detection
- seeded communities
- evolution of friendship/similarity
- . . .

Important building block

• measure similarity of two nodes

Similarity Measures

Common structural approaches:

- local: Considering all neighbors
 - fast
 - how to handle global queries?
 - Examples: Neighborhood intersection, Adamic-Agar, . . .
- global: Considering the whole network
 - more accurate
 - slow on large networks
 - Examples: Random walk with restarts (rooted PageRank), Katz, ...

- we use metadata solely as ground truth for evaluation
- could be combined

Our Goal

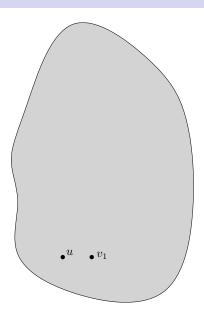
A similarity measure:

• as accurate as global measures and as fast as local measures

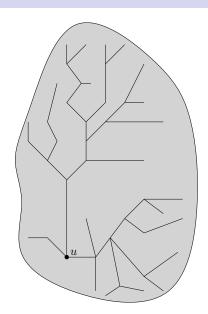
Three ideas:

- evaluate how each of the two nodes views the full graph
 - \rightarrow accuracy
- sketch these views
 - \rightarrow efficiency
- extend measure to properly deal with multiplicity of links
 - \rightarrow resilience

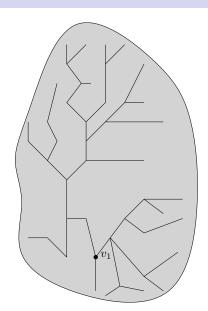
- \bullet for nodes u and v
- build shortest path trees from u and v
- compare them
- ullet if they look similar, u and v are similar



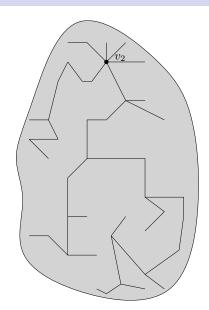
- \bullet for nodes u and v
- build shortest path trees from u and v
- compare them
- ullet if they look similar, u and v are similar



- \bullet for nodes u and v
- ullet build shortest path trees from u and v
- compare them
- ullet if they look similar, u and v are similar



- \bullet for nodes u and v
- ullet build shortest path trees from u and v
- compare them
- ullet if they look similar, u and v are similar

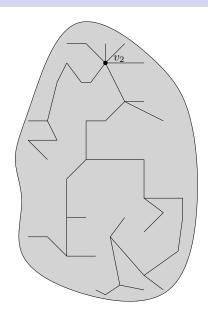


Idea:

- \bullet for nodes u and v
- ullet build shortest path trees from u and v
- compare them
- ullet if they look similar, u and v are similar

Problems:

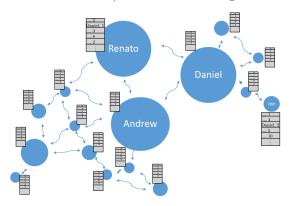
- building two shortest path trees is time-consuming
- how exactly do we compare two trees?



Idea 2: Efficient Computation

Main Idea:

- sample a subset of the nodes in the shortest-path trees using all-distances sketches: ADS(u) [Cohen97]
- each ADS(u) consists of a vector of (v, d_{vu}) pairs
- Expected ADS size is in $k \ln(n)$ per node n: number of nodes, k: constant (we use k = 3, resulting in label size ≈ 100)

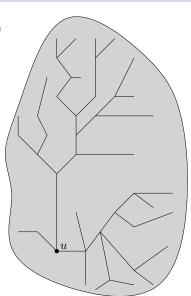


- sufficient to compare ADS(u) and ADS(v) proof in the paper!
- the more they overlap, the more similar u and v are

Definition

$$\mathsf{Closeness}(u,v) = \frac{|\mathsf{ADS}(u) \cap \mathsf{ADS}(v)|}{|\mathsf{ADS}(u) \cup \mathsf{ADS}(v)|}$$

- easy to compute
- size of labels bounded
- ⇒ queries in microseconds

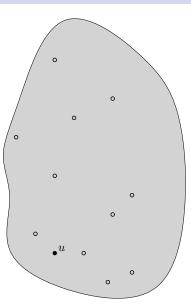


- sufficient to compare ADS(u) and ADS(v) proof in the paper!
- the more they overlap, the more similar u and v are

Definition

$$\mathsf{Closeness}(u,v) = \frac{|\mathsf{ADS}(u) \cap \mathsf{ADS}(v)|}{|\mathsf{ADS}(u) \cup \mathsf{ADS}(v)|}$$

- easy to compute
- size of labels bounded
- ⇒ queries in microseconds

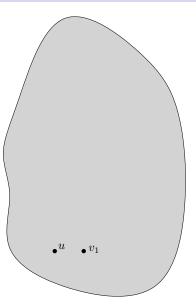


- sufficient to compare ADS(u) and ADS(v) proof in the paper!
- the more they overlap, the more similar u and v are

Definition

$$\mathsf{Closeness}(u,v) = \frac{|\mathsf{ADS}(u) \cap \mathsf{ADS}(v)|}{|\mathsf{ADS}(u) \cup \mathsf{ADS}(v)|}$$

- easy to compute
- size of labels bounded
- ⇒ queries in microseconds

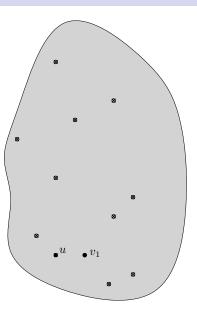


- sufficient to compare ADS(u) and ADS(v) proof in the paper!
- the more they overlap,
 the more similar u and v are

Definition

$$\mathsf{Closeness}(u,v) = \frac{|\mathsf{ADS}(u) \cap \mathsf{ADS}(v)|}{|\mathsf{ADS}(u) \cup \mathsf{ADS}(v)|}$$

- easy to compute
- size of labels bounded
- ⇒ queries in microseconds

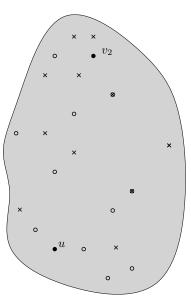


- sufficient to compare ADS(u) and ADS(v) proof in the paper!
- the more they overlap,
 the more similar u and v are

Definition

$$\mathsf{Closeness}(u,v) = \frac{|\mathsf{ADS}(u) \cap \mathsf{ADS}(v)|}{|\mathsf{ADS}(u) \cup \mathsf{ADS}(v)|}$$

- easy to compute
- size of labels bounded
- ⇒ queries in microseconds



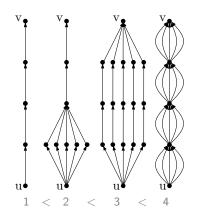
Idea 3: Dealing with Multiplicity

Problem:

distance does not account for multiple paths

Intuition:

similarity of a pair **should** increase with path multiplicity.



Idea 3: Dealing with Multiplicity

Problem:

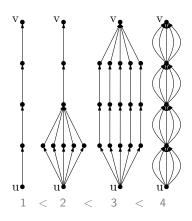
distance does **not** account for multiple paths

Intuition:

similarity of a pair **should** increase with path multiplicity.

Idea:

- multiply each edge e by $-\ln(u_e)$ u_e random number between 0 and 1
- repeat process multiple times we use 16
- highly connected pairs stay close with higher probability



Implementation: Compute multiple sketches, average over results.

Considered Networks

Networks:

- arXiv / DBLP co-authorship network
 - nodes: authors
 - undirected edges
 - edge weight: 1/(number of common papers)
 - ground truth: word similarity of title+abstracts or title+venue
- Twitter mention network, tweets from Dec. 2011
 - nodes: users
 - directed edges
 - edge weight: 1/(number of mentions)
 - ground truth: word similarity of tweets
- synthetic small world (SW) network [Kleinberg00]
 - toroidal grid with one additional edge per node
 - ▶ length of additional edges has length d with prob. 2^{-d} (in the grid)
 - undirected edges with unit weight
 - ground truth: L₁ distance

Key statistics and performance

Observations:

- we can handle large networks
- ADS computation times are reasonable not tuned at this point
- similarity can be evaluated within microseconds

	nodes	edges	prep.*	label	query*
graph	$[\times 10^{6}]$	$[\times 10^{6}]$	[h:m]	size	$[\mu$ s $]$
arXiv	0.4	28.7	0:02	37.9	1.22
DBLP	1.1	9.2	0:02	39.1	1.64
twitter	29.6	603.9	8:05	101.6	3.51
smallworld	1.0	6.0	0:02	40.7	1.35

^{*} single core of two 8-core Intel Xeon E-5-2690 2.90 GHz
machine with 384 GiB of DDR3-1066 RAM.

Key statistics and performance

Observations:

- we can handle large networks
- ADS computation times are reasonable not tuned at this point
- similarity can be evaluated within microseconds

	nodes	edges	prep.*	label	query*
graph	$[\times 10^{6}]$	$[\times 10^{6}]$	[h:m]	size	$[\mu s]$
arXiv	0.4	28.7	0:02	37.9	1.22
DBLP	1.1	9.2	0:02	39.1	1.64
twitter	29.6	603.9	8:05	101.6	3.51
smallworld	1.0	6.0	0:02	40.7	1.35

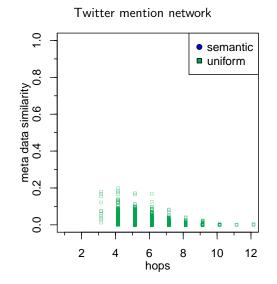
^{*} single core of two 8-core Intel Xeon E-5-2690 2.90 GHz
machine with 384 GiB of DDR3-1066 RAM.

Performance good, how about quality?

Which node pairs should we evaluate?

Uniform distribution:

- random picking of pairs
- often not very similar
- many far-away pairs



Which node pairs should we evaluate?

Uniform distribution:

- random picking of pairs
- often not very similar
- many far-away pairs

Semantic distribution:

- uniform over ground truth (as much as possible)
- many similar pairs
- often not very far away

Twitter mention network semantic uniform meta data similarity ດ ຄ 0.8 0 2 8 10 12

hops

How to evaluate?

Similarity evaluation

- evaluate similarity measure for each pair
- rank the pairs according to the similarity measure and metadata similarity
- compare rankings using Spearman's rank correlation
- correlation values of 1 are perfect, 0 is random.

Results

measure	arXiv DBLP Twitter	SW
Adamic-Adar		
hops		
distance		
RWR-0.75		
RWR-0.50		
RWR-0.25		
RWR-0.00		
Closeness		
Closeness REL	-	

Results

		D D I D	+ ···	C) 4 /
measure	arXıv	DRL	Twitter	SW
Adamic-Adar	0.626	0.746	0.548	0.000
hops	0.752	0.748	0.169	0.767
distance	0.590	0.634	-0.140	0.767
RWR-0.75		0.734	_	0.286
RWR-0.50	_	0.737	_	0.617
RWR-0.25	_	0.740	_	0.791
RWR-0.00	_	0.500	_	0.915
Closeness	0.641	0.742	0.613	0.609
Closeness REL	0.634	0.752	0.649	0.808

Results

Observations:

- global approaches perform better
- Closeness REL
 - superior in twitter and DBLP
 - competitive in other networks
 - much faster queries after preprocessing

measure	arXiv	DBLP	Twitter	SW
Adamic-Adar	0.626	0.746	0.548	0.000
hops	0.752	0.748	0.169	0.767
distance	0.590	0.634	-0.140	0.767
RWR-0.75	_	0.734	_	0.286
RWR-0.50	_	0.737	_	0.617
RWR-0.25	_	0.740	_	0.791
RWR-0.00		0.500	_	0.915
Closeness	0.641	0.742	0.613	0.609
Closeness REL	0.634	0.752	0.649	0.808

Conclusion

Results

- Global similarity computation at scale
 - ► Closeness similarity
 in the paper: a lot more general than in this talk
 - ► ADS labels
 - ► REL

Conclusion

Results

- Global similarity computation at scale
 - Closeness similarity
 in the paper: a lot more general than in this talk
 - ADS labels
 - REL

Future work

- more experiments with different distance decay and node weight functions
- compute ADS online-dynamically
- apply these techniques to community detection

Conclusion

Results

- Global similarity computation at scale
 - Closeness similarity
 in the paper: a lot more general than in this talk
 - ADS labels
 - REL

Future work

- more experiments with different distance decay and node weight functions
- compute ADS online-dynamically
- apply these techniques to community detection

Thank you!

Appendix

Definition of Closeness similarity

$$J_{\alpha,\beta}(v,u) = \frac{\sum_{w} \alpha(\max\{\delta_{vw}, \delta_{uw}\})\beta(w)}{\sum_{w} \alpha(\min\{\delta_{vw}, \delta_{uw}\})\beta(w)}.$$

Definition of Closeness similarity
$$\alpha(x) \geq 0$$
, monotone non-increasing
$$J_{\alpha,\beta}(v,u) = \frac{\sum_{w} \alpha(\max\{\delta_{vw},\delta_{uw}\})\beta(w)}{\sum_{w} \alpha(\min\{\delta_{vw},\delta_{uw}\})\beta(w)}. \qquad \beta(w) \geq 0$$

Definition of Closeness similarity
$$\alpha(x) \geq 0, \text{ monotone non-increasing}$$

$$J_{\alpha,\beta}(v,u) = \frac{\sum_{w} \alpha(\max\{\delta_{vw},\delta_{uw}\})\beta(w)}{\sum_{w} \alpha(\min\{\delta_{vw},\delta_{uw}\})\beta(w)}. \qquad \beta(w) \geq 0$$
 distance

- very general definition
 - arbitrary distance decay function $\alpha(\cdot)$ and node weight function $\beta(\cdot)$
 - generalizes and extends many local measures
 - extends Adamic-Adar for $\alpha(x) = 1/(1+x)$ and $\beta(w) = 1/\log |\Gamma(w)|$, where $|\Gamma(w)|$ is the degree of w.
 - considers the whole graph, hence computationally expensive

Definition of Closeness similarity
$$\alpha(x) \geq 0$$
, monotone non-increasing
$$J_{\alpha,\beta}(v,u) = \frac{\sum_{w} \alpha(\max\{\delta_{vw},\delta_{uw}\})\beta(w)}{\sum_{w} \alpha(\min\{\delta_{vw},\delta_{uw}\})\beta(w)}. \qquad \beta(w) \geq 0$$
 distance

- very general definition
 - ▶ arbitrary distance decay function $\alpha(\cdot)$ and node weight function $\beta(\cdot)$
 - generalizes and extends many local measures
 - extends Adamic-Adar for $\alpha(x) = 1/(1+x)$ and $\beta(w) = 1/\log |\Gamma(w)|$, where $|\Gamma(w)|$ is the degree of w.
 - considers the whole graph, hence computationally expensive
- we can estimate Closeness similarity efficiently using ADS labels
 - considers only nodes in the ADS labels
 - the root of the expected square error is in $O(1/\sqrt{k})$
 - be distance decay function $\alpha(\cdot)$ and node weight function $\beta(\cdot)$ can be chosen to fit the application
 - more results in the paper, including the full estimator, bounds on estimation and computation, how to improve bounds, etc . . .

All-distance sketch (ADS) construction

1. Assign a rank $r(u) \in [0,1]$ to each node u in the network

2. Build ADS label

- Definition:
 - $\mathsf{ADS}(v) := \{(u, d_{vu}) | r(u) \text{ is one of the } k \text{ smallest } r(\cdot) \text{ within } d_{vu} \text{ of } v\}$
- Naïve approach: Compute each label separately
- More efficient: Add each node to respective labels, start with low $r(\cdot)$ nodes
 - still n Dijkstra executions, however:
 - prune Dijkstra whenever a node is not added
 - very few nodes per Dijkstra considered for nodes with high $r(\cdot)$ values
- 3. Sort each label by node id

Overall complexity: $O(km \ln^2(n))$

ADS distance as similarity:

$$\mathsf{ADS}\;\mathsf{distance}(u,v) = \min_{\stackrel{(w,d,w) \in}{\mathsf{ADS}(u) \cap \mathsf{ADS}(v)}} d_{uw} + d_{vw}$$

ADS distance is an upper bound on the actual distance.

Semantic distribution

measure	arXiv	DBLP	Twitter	SW
Adamic-Adar	0.626	0.746	0.548	0.000
hops	0.752	0.748	0.169	0.767
RWR-0.75	_	0.734		0.286
RWR-0.50	_	0.737		0.617
RWR-0.25	_	0.740		0.791
RWR-0.00	_	0.500		0.915
distance	0.590	0.634	-0.140	0.767
ADS dist	0.566	0.637	-0.127	0.671
ADS dist REL	0.614	0.584	-0.155	0.865
Closeness	0.641	0.742	0.613	0.609
Closeness REL	0.634	0.752	0.649	0.808

Uniform distribution

measure	arXiv	DBLP	Twitter	SW
Adamic-Adar	0.097	0.034	0.107	0.000
hops	0.350	0.221	0.536	0.623
distance	0.470	0.319	0.191	0.623
ADS dist	0.462	0.318	0.196	0.519
ADS dist REL	0.419	0.314	0.242	0.769
Closeness	0.039	0.015	0.461	0.413
Closeness REL	0.063	0.034	0.612	0.666

Hop-based distribution

measure	arXiv	DBLP	Twitter	SW
Adamic-Adar	0.570	0.457	0.420	0.486
hops	0.645	0.468	0.678	0.831
distance	0.648	0.507	0.447	0.831
ADS dist	0.617	0.497	0.448	0.839
ADS dist REL	0.512	0.454	0.471	0.947
Closeness	0.379	0.249	0.518	0.877
Closeness REL	0.404	0.320	0.637	0.949