

Inferring User Interests from Tweet Times

Dinesh Ramasamy, Sriram Venkateswaran and Upamanyu Madhow

Department of ECE, University of California Santa Barbara

Lots of data

More and more users

More and more *user* generated data

Detailed understanding

- Interests of each user
 - "Whose feed should I place my advertisement on?"
 - "Which post should come up first on a users' feed?"
 (user experience)
- Value to simple methods
 - Used *repetitively* over a large user pool

Existing methods

Obtain user interests via:

- Analysis of user generated content
 - Tweets/posts
- User lists/groups
- Structure of user-interactions in the network
- This work
 - Time → Infer user interests

Select references

- TwitterStand [Sankaranarayanan et al]
 - Cluster tweets into different news groups
- Locate earthquakes in space & time [Sakaki et al]
 - When earthquakes happened?
- PET [Lin et al]
 - Identify trending topics, when trending?

Live conversations

- Always connected
 - Smartphones & tablets

- Broadcast current thoughts
 - Live commentary on "current events" of interest
- Prompts *live conversations* with others
 who share similar interests
 Value to synchrony

Information in time

- Twitter amplifies *live*
 - Brief nature of tweets

Tweets times tied to "current events"

- Identify interests from time of tweets
 - Knowledge of times of "events"
 - Users whose tweet times "correlate" with these times

Example

Tweet times tied to external events

• Use known times of external events to learn user interests

Interests from tweet times

User interactions

People you interact with share some of your interests

Clues from tweet times of neighboring users

Overview

Interests from tweet times of user

• Incorporate tweet times of neighbors

Limitations

Future work

INTERESTS FROM TWEET TIMES

Interests from tweet times

Buzz about topic X at certain times

- "Event times" known to us

Expect users interested in X to tweet during these event times

Baseball fandom

Want to identify fans of a baseball team

Game times $\leftarrow \rightarrow$ event times

Timeline of tweets

A fan tweets **more often** during game times

More often than?

- Some users tweet prolifically; others hardly tweet
 - Need a personal "baseline"
- More often when compared to other times for the same user

Ratio of rates

"Ratio of rates" statistic

```
Rate during game times
Rate during non-game times
```

- Prolific user
 - # tweets during games : 12 (30 hours)
 - # tweets during non-games times : 24 (150 hours)
- Sporadic user
 - # tweets during games : 1 (30 hours of games)
 - # tweets during non-games times : 2 (150 hours)
- Same ratio of rates 5/2
 - Intuition: More confident about the prolific user

Statistical model for tweet times

Tweet times of a user – drawn from a Poisson process of *time-varying rate*

- Rate during non-game times (λ_0 tweets/minute) (personal baseline)
- Rate during game times (λ_1 tweets/minute)

Model: Tweet times of a Fan

A fan tweets more often during game times $\lambda_1 > \lambda_0$

Statistic for fandom

Evidence: Tweet times of user

- Statistic for fandom:
 - How confident are we in the assertion that he/she has tweeted more often during games?

$$Z = \Pr[\lambda_1 > \lambda_0 | \text{Tweet times}]$$

Low sensing overhead

- Minimalistic model
 - Poisson with two rates:

- #Tweets during games N_1
- #Tweets in non-game times N_0

- Exact tweet times not needed $Z = \Pr[\lambda_1 > \lambda_0 | \text{Tweet Times}]$
- Easy to compute

$$Z = \Pr[\lambda_1 > \lambda_0 | \text{Tweet Times}]$$

$$=\Pr[\lambda_1 > \lambda_0 | N_0, N_1]$$

Low false alarm rates

False alarms: Proportion of non-fans misclassified as fans

- Particular interest
 - Fraction of "fans" is small (2%)
 - Most users are "non-fans" (98%)
- Moderate false alarm rates are bad! (5%)
 - Pool of users who clear the threshold
 Miss-classified non-fans (4.9%) >> Total fans (2%)

Detection rate 100% does not help

Need low false alarms

Dataset

Predict fandom of SFGiants, Yankees

- Dataset
 - 10% random under-sampling one month window
- Identified ~ 600 fans
 - text analysis of { tweets in 15 minute window before & after each game }
- 1000 non-fans
 - randomly picked users

Results

Obtained by progressively decreasing the thresholds

0.5% false alarm	RATIO OF RATES	Bayesian Z
SFGiants	5.6%	15.8%
Yankees	4.5%	12.7%

Minimal sensing and computation

No computations : Toss a coin → false alarm = detection rate

INFORMATION FROM NEIGHBORS

User interactions

Use tweet time dynamics of {neighbor} to refine estimates of your fandom

User interactions

Neighbors – {user handles referred to by tagged user during observation window}

- Available in tweet meta-data
 - o Build from a stream of tweets
 - No need to parse tweet
- Captures live interactions

Simplified neighborhood

Markov model

• Conditioned on the tagged user's fandom C_0 , neighbor fandom $\{C_k\}$ s are independent random variables

$$\Pr[C_1,\ldots,C_5|C_0] = \prod_k \Pr[C_k|C_0]$$

Neighbor of a fan – more likely to be a fan than neighbor of not-a-fan

$$\alpha = \Pr[C_k = 1 | C_0 = 1]$$

$$\beta = \Pr[C_k = 1 | C_0 = 0]$$

$$\alpha \gg \beta$$

Not all users are timely

- A fan may not tweet during games
- Non-fan may tweet heavily during games (other interests?)

$$p_t = \Pr[Y_k = 1 | C_k = 1]$$
 Probability of fan being timely

$$p_f = \Pr[Y_k = 1 | C_k = 0]$$
 Probability of *false alarms* (non-fan tweeting aggressively during games)

Saturate per-user likelihoods

$$Z_k = \Pr[\lambda_1(k) > \lambda_0(k)|\text{Tweet times}]$$

= $\Pr[Y_k = 1|\text{Tweet times}]$

Soft-thresholds per-user likelihood ratios:

$$Z_k / (1 - Z_k)$$

Acknowledge that Z_k makes mistakes

$$\phi_k = \frac{\Pr[\text{Tweet times}|C_k = 1]}{\Pr[\text{Tweet times}|C_k = 0]}$$

$$= \frac{1 + p_t \left(\frac{Z_k}{1 - Z_k} - 1\right)}{1 + p_f \left(\frac{Z_k}{1 - Z_k} - 1\right)} \xrightarrow{p_t = 0.9} p_f = 10^{-20}$$

Consolidated statistic

Fuse all observations
Statistic is Log Likelihood Ratio
of all observations

$$S = \log \frac{\Pr[\mathbf{N}_0, \mathbf{N}_1 \dots, \mathbf{N}_L | C_0 = 1]}{\Pr[\mathbf{N}_0, \mathbf{N}_1 \dots, \mathbf{N}_L | C_0 = 0]}$$
$$= \log \phi_0 + \sum_{n=1}^{n=L} \log \frac{1 + \alpha (\phi_n - 1)}{1 + \beta (\phi_n - 1)}$$

Further saturate neighbor likelihood ratios

Results

$$\tilde{S} = \log \phi_0 + \kappa \sum_{n=1}^{n=L} \log \phi_n \ \ \text{Parameters} \ (p_{f^{=\,10^{\text{-}20}},\,p_t^{\,=\,0.9,\,\kappa\,=\,1/6})}$$

0.5% false alarm	RATIO OF RATES	Bayesian Z	USER + NEIGHBORS \tilde{S}
SFGiants	5.6%	15.8%	31.7%
Yankees	4.5%	12.7%	20.7%

Limitations

Heavy event times overlap among different interests

"How different" should two event windows be?

Interests must elicit a timely response from users

Future work

- Learn topic-specific event times in a data-driven manner?
 - Run text analysis on aggregate feeds?

 News feeds, etc
 - Associate topics with time
 - Feeds can be targeted to the topic

Future work

- Neighbor interactions overlap
 - Extend the Bayesian approach

• Strength of interactions?

Conclusion

- Value to using times of tweets/posts
 - Good detection performance at low false alarm rates
 - Scalable: low sensing, computational overhead
 - Complement existing methods
- Interactions provide a lot of information
 - Further improves detection accuracy
- Interesting directions for future research
 - Experiments to identify interests timely response
 - Learn event times data-driven manner
 - Incorporate graph structure

Thank you