On-Line Social Systems with Long-Range Goals

Jon Kleinberg

Cornell University

Including joint work with Ashton Anderson, Dan Huttenlocher, Jure Leskovec, and Sigal Oren.
Growth in on-line systems where users have long visible lifetimes and set long-range goals.

- Reputation, promotion, status, individual achievement.

How should we model individual decision-making in these settings with long-range planning?
Badges

Structural framework for analysis: state space of activities.

- User lifetimes correspond to trajectories through state space.
- Effort incurs cost, leads to rewards.

On-line domain: badges and related incentives as reward systems.

- Social-psychological dimensions [Antin-Churchill 2011]
- Game-theoretic [Deterding et al 2011, Easley-Ghosh 2013]
- Contest/auction-based [Cavallo-Jain 12, Chawla-Hartline-Sivan 12]
Model the interaction of incentives and long-range planning in state spaces representing actions on site.

(1) Cumulative rewards: milestones for effort
 [Anderson-Huttenlocher-Kleinberg-Leskovec]
 - A basic model of an individual working toward long-range rewards.
 - Exploration of the model on StackOverflow
 - Experiments with MOOC forums on Coursera

(2) Incentives and planning with time-inconsistent behavior
 [Kleinberg-Oren]
 - Start from principles in behavioral economics
 - Develop a graph-theoretic model to represent planning as path-finding with a behavioral bias.
First Domain for Analysis: Stack Overflow

Connected components in a graph with 100 million nodes

I am trying to get the list of connected components in a graph with 100 million nodes. For smaller graphs, I usually use the `connected_components` function of the Networkx module in Python which does exactly that. However, loading a graph with 100 million nodes (and their edges) into memory with this module would require ca. 110GB of memory, which I don’t have. An alternative would be to use a graph database which has a connected components function but I haven’t found any in Python. It would seem that Dex (API: Java, .NET, C++) has this functionality but I’m not 100% sure. Ideally I’m looking for a solution in Python. Many thanks.

1 Answer

SciPy has a `connected_components` algorithm. It expects as input the adjacency matrix of your graph in one of its `sparse matrix formats` and handles both the directed and undirected cases.

Building a sparse adjacency matrix from a sequence of `(i, j)` pairs `adj_list` where `i` and `j` are (zero-based) indices of nodes can be done with

```
> indices, adj_matrix = zip(*adj_list)
```
A population of users and a site designer.

- Designer wants certain frequency of activities.
- Designer creates badges, which have value to users.

- User trades off preferred activities versus reaching badge.
- This “steers” behavior – balancing activities differently.
- Compare to goal-gradient hypothesis [Kivetz et al 2006]

User’s basic trade-off corresponds to path through state space.
- Action types A_1, A_2, \ldots, A_n.
 (ask, answer, vote, off-site, ...)
- User’s state is n-dimensional.
- User has preferred distribution p
 over action types.
- User exits system with probability
 $\delta > 0$ each step.

- Each badge b is a monotone subset of the state space;
 reward V_b is conferred when the user enters this subset.
- User can pick distribution $x \neq p$ to get badge more quickly;
 comes at a cost $g(x, p)$.
- User optimization: Choose $x_a = (x_a^1, \ldots, x_a^n)$ in each state a
 to optimize utility $U(x_a)$.

\[
U(x_a) = \sum_{b \text{ won}} V_b - g(x_a, p) + (1 - \delta) \sum_{i=1}^{n} x_a^i \cdot U(x_{a+e_i})
\]
What a Solution Looks Like

![Graph showing the relationship between the number of A_1 and A_2 actions.](image)
Example: Badge at 25 actions of type 1.

- Canonical behavior: user “steers” in A_1 direction; then resets after receiving the badge.
Evaluating Qualitative Predictions

Consider two cumulative badges on StackOverflow.

- **Civic Duty badge**: Vote at least 300 times.
- **Electorate**: Vote on at least 600 questions (plus some other technical conditions).

5-dimensional state space: \((Q, A, Q\text{-vote}, A\text{-vote}, \text{off-site})\).
The Badge Placement Problem

- Given V_b and a desired action distribution q, how should you define a badge of value V_b to create an action distribution as close to q as possible?

- Special case: If the badge is a milestone on action i, and the goal is to maximize amount of action i.
The Feasible Region

Can we characterize the feasible region?

- Which proportions of activities can be implemented with a limited set of badges?

Can we achieve this mix of A_1, A_2 using a badge on A_1 and a badge on A_2?
The Feasible Region

Example, with preferred $\mathbf{p} = (0.1, 0.1, 0.8)$.
An Experiment on Coursera

Thread byline:

Badge ladder:

<table>
<thead>
<tr>
<th>Badge Series (2 earned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Reader</td>
</tr>
<tr>
<td>To earn the next badge (Silver), you must read 30 threads from your classmates.</td>
</tr>
<tr>
<td>The Supporter</td>
</tr>
<tr>
<td>To earn the next badge (Silver), you must vote on 15 posts that you find interesting or useful.</td>
</tr>
<tr>
<td>The Contributor</td>
</tr>
<tr>
<td>To earn the next badge (Bronze), you must post 3 replies that your classmates find interesting.</td>
</tr>
<tr>
<td>The Conversation Starter</td>
</tr>
<tr>
<td>To earn the next badge (Bronze), you must start 3 threads that your classmates find interesting.</td>
</tr>
<tr>
<td>Top Posts</td>
</tr>
<tr>
<td>To earn the next badge (Bronze), you must write a post that gets 5 upvotes from your classmates.</td>
</tr>
</tbody>
</table>
An Experiment on Coursera
Planning and Time-Inconsistency

Tacoma Public School System

Our models thus far:
- Plans are multi-step.
- Agents chooses optimal sequence given costs and benefits.

What could go wrong?
- Costs and benefits are unknown, and/or genuinely changing over time.
- Time-inconsistency.
Our models thus far:
- Plans are multi-step.
- Agents choose optimal sequence given costs and benefits.

What could go wrong?
- Costs and benefits are unknown, and/or genuinely changing over time.
- Time-inconsistency.
Why did George Akerlof not make it to the post office?

Agent must ship a package sometime in next n days.
- One-time effort cost c to ship it.
- Loss-of-use cost x each day hasn’t been shipped.

An optimization problem:
- If shipped on day t, cost is $c + tx$.
- Goal: $\min_{1 \leq t \leq n} c + tx$.
- Optimized at $t = 1$.

In Akerlof’s story, he was the agent, and he procrastinated:
- Each day he planned that he’d do it tomorrow.
- Effect: waiting until day n, when it must be shipped, and doing it then, at a significantly higher cumulative cost.
Why did George Akerlof not make it to the post office?

Agent must ship a package sometime in next \(n \) days.

- One-time effort cost \(c \) to ship it.
- Loss-of-use cost \(x \) each day hasn’t been shipped.

A model based on present bias [Akerlof 91; cf. Strotz 55, Pollak 68]

- Costs incurred today are more salient: raised by factor \(b > 1 \).

On day \(t \):

- Remaining cost if sent today is \(bc \).
- Remaining cost if sent tomorrow is \(bx + c \).
- Tomorrow is preferable if \((b - 1)c > bx \).

General framework: quasi-hyperbolic discounting [Laibson 1997]

- Cost/reward \(c \) realized \(t \) units in future has present value \(\beta \delta^t c \)
- Special case: \(\delta = 1 \), \(b = \beta^{-1} \), and agent is naive about bias.
- Can model procrastination, task abandonment [O’Donoghue-Rabin08], and benefits of choice reduction [Ariely and Wertenbroch 02, Kaur-Kremer-Mullainathan 10]
Cost ratio:

\[
\text{Cost incurred by present-biased agent} \quad \frac{\text{Minimum cost achievable}}{} \quad \\
\text{Across all stories in which present bias has an effect, what's the worst cost ratio?}
\]

\[
\max_{\text{stories } S} \text{cost ratio}(S).
\]
Cost ratio:

\[
\frac{\text{Cost incurred by present-biased agent}}{\text{Minimum cost achievable}}
\]

Across all stories in which present bias has an effect, what’s the worst cost ratio?

\[
\max_{\text{stories } S} \text{cost ratio}(S).
\]
Use graphs as basic structure to represent scenarios.

- Agent plans to follow cheapest path from s to t.
- From a given node, immediately outgoing edges have costs multiplied by $b > 1$.
Use graphs as basic structure to represent scenarios.

- Agent plans to follow cheapest path from s to t.
- From a given node, immediately outgoing edges have costs multiplied by $b > 1$.
Use graphs as basic structure to represent scenarios.

- Agent plans to follow cheapest path from s to t.
- From a given node, immediately outgoing edges have costs multiplied by $b > 1$.
Node $v_i = \text{reaching day } i \text{ without sending the package.}$
Variation: agent only continues on path if cost \(\leq \) reward at \(t \).

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.
Variation: agent only continues on path if cost \leq reward at t.

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.
Variation: agent only continues on path if cost \leq reward at t.

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.
Variation: agent only continues on path if cost \leq reward at t.

- Can model abandonment: agent stops partway through a completed path.
- Can model benefits of choice reduction: deleting nodes can sometimes make graph become traversable.
Three-week short course with two projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- $v_{ij} = $ the state in which i weeks of the course are done and the student has completed j projects.
Three-week short course with two projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- $v_{ij} =$ the state in which i weeks of the course are done and the student has completed j projects.
Three-week short course with two projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- $v_{ij} =$ the state in which i weeks of the course are done and the student has completed j projects.
Three-week short course with two projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- $v_{ij} =$ the state in which i weeks of the course are done and the student has completed j projects.
Three-week short course with two projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \(v_{ij} = \) the state in which \(i \) weeks of the course are done and the student has completed \(j \) projects.
Three-week short course with two projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- v_{ij} = the state in which i weeks of the course are done and the student has completed j projects.
Three-week short course with two projects.

- Reward of 16 from finishing the course.
- Effort cost in a given week: 1 from doing no project, 4 from doing one, 9 from doing both.
- \(v_{ij} \) = the state in which \(i \) weeks of the course are done and the student has completed \(j \) projects.
1. Analyzing present-biased behavior via shortest-path problems.

2. Characterizing instances with high cost ratios.

4. Heterogeneity: populations with diverse values of b.
Cost ratio can be roughly b^n, and this is essentially tight. ($n = \#\text{nodes}$.)

Can we characterize the instances with exponential cost ratio?

- Goal, informally stated: Must any instance with large cost ratio contain Akerlof’s story as a sub-structure?
Graph H is a *minor* of graph G if we can contract connected subsets of G into “super-nodes” so as to produce a copy of H.

- In the example: G has a K_4-minor.
Graph H is a minor of graph G if we can contract connected subsets of G into “super-nodes” so as to produce a copy of H.

- In the example: G has a K_4-minor.
Graph H is a *minor* of graph G if we can contract connected subsets of G into “super-nodes” so as to produce a copy of H.

- In the example: G has a K_4-minor.
Characterizing Bad Instances via Graph Minors
Characterizing Bad Instances via Graph Minors
The k-fan F_k: the graph consisting of a k-node path, and one more node that all others link to.

Theorem

For every $\lambda > 1$ there exists $\varepsilon > 0$ such that if the cost ratio is $> \lambda^n$, then the underlying undirected graph of the instance contains an F_k-minor for $k = \varepsilon n$.

In subsequent work, tight bound by Tang et al 2015.
The agent traverses a path P as it tries to reach t. Let the \textit{rank} of a node on P be the logarithm of its dist. to t. Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P.
The agent traverses a path P as it tries to reach t.

Let the *rank* of a node on P be the logarithm of its dist. to t.

Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P.
The agent traverses a path P as it tries to reach t.
Let the *rank* of a node on P be the logarithm of its dist. to t.
Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P.
The agent traverses a path P as it tries to reach t.
Let the *rank* of a node on P be the logarithm of its dist. to t.
Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P.
The agent traverses a path P as it tries to reach t.

Let the *rank* of a node on P be the logarithm of its dist. to t.

Show that every time the rank increases by 1, we can construct a new path to t that avoids the traversed path P.
Heterogeneous population: which paths are possible as we vary b?

- A kind of parametric shortest path problem.
- How many distinct paths can arise over all b?
- What kind of parametric shortest path problem is it?
 Analogy: $c_e(x) = a_e x + b_e$ leads to super-polynomial $\#$ paths.
 [Carstensen 1983, Nikolova et al 2006]
- In our case, at most $O(n^2)$ distinct paths.
Choice reduction problem: Given G, not traversable by an agent, is there a subgraph of G that is traversable?

- Our initial idea: if there is a traversable subgraph in G, then there is a traversable subgraph that is a path.
- But this is not the case.

Results:

- A characterization of the structure of minimal traversable subgraphs.
- NP-completeness [Feige 2014, Tang et al 2015]
- Open: Approximation by slightly increasing reward and deleting nodes?
Choice reduction problem: Given G, not traversable by an agent, is there a subgraph of G that is traversable?

- Our initial idea: if there is a traversable subgraph in G, then there is a traversable subgraph that is a path.
- But this is not the case.

Results:

- A characterization of the structure of minimal traversable subgraphs.
- NP-completeness [Feige 2014, Tang et al 2015]
- Open: Approximation by slightly increasing reward and deleting nodes?
Reward systems are a key part of the design space.

- Where does the value reside in rewards for long-range planning? Social, motivational, transactional, ... ?
- How do these different mechanisms for value affect the design? How do we design for a mixture of motivations?
- Algorithmic ideas will play a crucial role in all these questions.